Tailoring buckybowls for fullerene recognition. A dispersion-corrected DFT study.

نویسندگان

  • Daniela Josa
  • Iván González-Veloso
  • Jesús Rodríguez-Otero
  • Enrique M Cabaleiro-Lago
چکیده

A series of buckybowls with different sizes and structures have been tested as potential receptors of fullerenes C60, C70 and C40. Among these bowls are corannulene (C20H10), sumanene (C21H12), pinakene (C28H14), hemifullerene (C30H12), circumtrindene (C36H12), pentaindenocorannulene (C50H20) and bowl-shaped hexabenzocoronene derivatives. An exhaustive study, taking into account different orientations of fullerenes, was performed in order to obtain the most favourable arrangement for interacting with the bowls. Complexes were optimised at the SCC-DFTB-D level and interaction energies were obtained at the B97-D2/TZVP level including BSSE corrections. Comparison with the full B97-D2/TZVP results (optimisation plus interaction energies) suggests that the B97-D2/TZVP//SCC-DFTB-D approach may be a useful screening tool for designing fullerene receptors. Regarding the "catching" ability of the different buckybowls, it can be concluded that the shape of a buckybowl plays a crucial role in its success. Thus, it seems that the addition of flaps at the bowl rim by benzannelation is an effective strategy for enhancing the interaction with fullerenes, providing enough flexibility to extend the contact surface with the fullerene moiety. Accordingly, a bowl-shaped hexabenzocoronene derivative (C72H24) showed the best ability among the buckybowls evaluated for catching the fullerenes C60, C70 and C40; it is noteworthy that, when interacting with C60, the interaction energy is three times that corresponding to the prototypical buckybowl, corannulene. On the contrary, the more rigid and compact is the structure of a buckybowl, the smaller its ability to interact with fullerenes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fullerene recognition with molecular tweezers made up of efficient buckybowls: a dispersion-corrected DFT study.

In 2007, Sygula and co-workers introduced a novel type of molecular tweezers with buckybowl pincers that have attracted the substantial interest of researchers due to their ideal architecture for recognizing fullerenes by concave-convex π∙∙∙π interactions (A. Sygula et al., J. Am. Chem. Soc., 2007, 129, 3842). Although in recent years some modifications have been performed on these original mol...

متن کامل

Adenine molecule interacting with golden nanocluster: A dispersion corrected DFT study

The interaction between nanoparticles and biomolecules such as protein andDNA is one of the major instructions of nanobiotechnology research. In this study,we have explored the interaction of adenine nucleic base with a representativegolden cluster (Au13) by using dispersion corrected density functional theory(DFT-D3) within GGA-PBE model of theory. Various active sites ...

متن کامل

Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes.

Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-ba...

متن کامل

Binding of cerium monoxide to annulenes and buckybowls.

The structural, electronic, bonding and magnetotropic properties of inclusion compounds formed upon interaction of cerium monoxide, CeO, with buckybowls (quadrannulene, C(31)H(16), corannulene, C(20)H(10) and sumanene, C(21)H(12)) have been investigated by DFT calculations. For the sake of comparison the structural, electronic, bonding and magnetotropic spectroscopic properties of related annul...

متن کامل

Investigation of Chemical Properties in Fullerene Derivatives of Atenolol Drug: A DFT Study

In this study, the drug atenolol on C60 fullerene were the drug and its derivatives were optimized fullerene. NBO and NMR for complex computations required in the HF/6-31G (d) and B3LYP/6-31G (d) quantum chemistry method was used. Mechanical quantum calculations in theory level of B3LYP/6-31G were performed on structure of atenolol and nano fullerene atenolol with different positions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2015